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1. INTRODUCTION

We will discuss an active scalar equation(1, 2) and describe briefly the results
of recent numerical simulations.(3) We will show that the active scalar
exhibits a general path transformation covariance; then we use this
property to prove that simple self-similar blow-up is not possible. The
active scalar equation is a model for the incompressible Euler equations.

The three dimensional Euler equations are evolution equations for the
three velocity components u,
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coupled with a fourth equation, V • u = 0, expressing incompressibility. This
is the Eulerian formulation, in which the velocity u and pressure p are
recorded at fixed locations x. The velocities and pressure vanish at infinity.
The pressure is determined using incompressibility.

The following are properties of the Euler equation that are shared
mutatis mutandis by the active scalar: The equation is conservative, i.e., the
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total kinetic energy, f, \u\2 dx is a constant of motion. The possibility of
singularity formation arises when one considers the time evolution of
derivatives of u. The vorticity (anti-symmetric part of the gradient matrix)
obeys a quadratic equation, the Helmholtz equation, that expresses the fact
that vortex lines are material. The Helmholtz equation can be interpreted
as the vanishing of a commutator

where

is the material derivative,

and (o = V xu. The characteristics of the first order differential operator Q
are the vortex lines, the characteristics of the material derivative Dt are
Lagrangian particle paths. The vorticity magnitude is the line element of
the vortex line. It evolves according to the stretching equation

The stretching factor a is related to the vorticity magnitude through a prin-
cipal value singular integral:(1)

Here d is the spatial dimension, y is the unit vector in the direction of y,
£{x, t) = co/\w\ is the unit vector tangent to the vortex line passing through
x at time t and D is a specific geometric factor. The geometric factor is a
smooth function of three unit vectors, has zero average on the unit sphere,
j DdS{$) = 0 and vanishes pointwise when £(x, t) = + £(* + y, t).

Because a has the same order of magnitude as |cu|, dimensional
reasoning predicts blow-up of the type one encounters in the ordinary dif-
ferential equation dm/dt = m2,



where

This system resembles the Euler equation as was mentioned in the
introduction. It is conservative: not only is J \u\2 dx a constant of motion
but also 1\9\n dx are constants of motion for all n. The equation is equiv-
alent to the requirement that a commutator vanishes as in (2): Dt is the
same material derivative and Q = coV with to = VX0. The characteristics of
Q are level lines of 9. The Helmholtz equation for co, the stretching Eq. (3)
the singular integral representation (4), the above mentioned properties of
the geometric factor D and the Beale-Kato-Majda criterion hold for the
active scalar. In addition to this criterion, other more refined criteria exist
for both the Euler equation(5) and the active scalar. These criteria are based
on the representation (4) and, in particular, rule out the formation of a
shock in 9 across a smooth shock front.

A numerical study(2) proposed a certain initial datum and blow-up
scenario. The presence of a hyperbolic saddle point in the graph of 0
allowed for nonlinear growth of the gradient. One can imagine the local
graph of 6 as two hills that form an X-shaped range and change in time.
The gradient growth is due to the steepening, as time passes, of the hill
slopes. The maximum gradient is located close to the outside slopes and
moves towards the vertex. As the slopes steepen, the aperture of the X
shape closes. This depletes the temporal rate of change of the maximum
gradient, consistent with the geometric depletion in D. A numerical study(6)

suggested that the closing must happen in infinite time. In a recent rigorous
and inspiring work D. Cordoba(7) proved that indeed this must be the case
if the scalar level sets are locally distorted hyperbolas. The new numerical
evidence(3) suggests that the maximum of the gradient does not blow up in

is necessary for blow-up at time T.

2. ACTIVE SCALARS

We consider an active scalar 8 = 6(x, t) in R2 that solves

The well-known Beale-Kato-Majda criterion(4) guarantees that
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finite time; the study supports the conclusion of proper non-degenerate self-
similarity (see below).

3. GENERAL PATH TRANSFORMATIONS FOR
ACTIVE SCALARS

Let x = X{q, t) be a general path transformation—a time dependent,
possibly nonvolume preserving diffeomorphism—of inverse X~l(x, t) =
Q(x, t). Differentiating the identity

with respect to time t and space x and using the chain rule in (5) one can
check that the function

satisfies

where the relabeling velocity v = vx[u] of the path transformation X is

We will call

the path velocity of X. One can show that

where {•, •} is the Poisson bracket
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and the fact that this expression is invariant under changes of variables it
follows that the path velocity obeys

for general path transformations Y. Consequently the relabeling velocity
obeys

that is

Denoting 6X=0 we have also, quite obviously

The above important general path transformation covariance proper-
ties are valid for all active scalar models and have counterparts in the 3D
Euler equation. The usual Lagrangian path transformations are obtained
by setting vx = 0. The Eulerian path transformation is the identity, X=I,
and, consequently, the Eulerian relabeling velocity equals the Eulerian path
velocity. Thus, the Eulerian formulation of the active scalar problem uses
a trivial path transformation and the Lagrangian formulation a trivial
relabeling velocity.

The system (7), (8) and (9) can be viewed as a general path transfor-
mation formulation of the active scalar problem in the following manner.
One is given a relabeling velocity

that might be a functional of X. Equation (7) is an active scalar equation
that determines 0, assuming X known. The path velocity Ux is determined
from 0 and X through Eq. (9). The equation for the path transformation
(8) can be written as an evolution equation that updates X

This formulation is a generalization of both Eulerian and Lagrangian for-
mulations. If v{q, t) does not depend on X then Eq. (7) is a linear, passive



scalar equation and the formulation of the system is a version of the
Lagrangian one.
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4. PROPER NON-DEGENERATE SELF-SIMILARITY

Let us consider the case when X(q, t) carries the singularities and
0(q, t) is smooth. This is certainly the case for instance if X is the
Lagrangian path transformation and the initial datum 6{x, 0) = 90(x) is
smooth: in that case 0 = 6O. We are interested in the possibility of a non-
Lagrangian transformation that captures the blow-up and has a relatively
simple structure. For instance, one may assume a form

where both Z(q, t) and Y(p, t) are smooth diffeomorphisms up to and
including the blow-up time and A(t) is an invertible matrix that may blow
up in finite time, one can see from the above general path transformation
properties that we may consider, without loss of generality the case Z = I.
Indeed, if 0 = 6Y»A°Z is smooth, then &Z~X — ̂ Y-A is also smooth.

We define thus generalized self-similarity the situation in which the
true solution can be represented locally by

where 0 is a smooth function of its arguments, P(x, t) is likewise a smooth
function from some fixed domain (open, connected) of the x plane to a
time varying domain of the plane, and the matrix B{t) = {A{t))~l is invert-
ible but is allowed to blow up in finite time. This generalizes of course the
familiar isotropic case where P(x, t) = x and B(t) is a scalar (multiple of the
identity matrix). One should note that self-similar singularities, even if they
exist formally, may have an exceptional character for the blow-up problem
and not represent the typical dynamical formation of singularities. A case
in point is the well-known one dimensional Burgers equation 0, + 06x = 0
where the self-similar ansatz 9 = 0(x/(T—t)) is consistent and leads to
linear or constant profiles 0; nevertheless the formation of shocks from
smooth data is not at all a self-similar phenomenon.

Using Eq. (13) and the ansatz X= Y°A we obtain



Here ||B|| is a standard matrix norm. The inequalities (19) and (20)
are required to hold throughout the time interval under consideration, up
to the putative blow-up time. A continuous function is said to be proper if
the preimages of all compacts are compacts. The function O = q\ + q\ is
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where

and p = A(t)q. Multiplying (15) from the left by A(t)–1 and reading the
result at q = (A(t))~l p we obtain the equation

for

We will say that the generalized self-similar ansatz is non-degenerate if ther
exists an invertible, symmetric matrix A, a positive function X{q, t) >0 an
a positive constant K such that

and

hold. This definition corresponds to the situation in which P(x, t)=0
describes the location of a nondegenerate critical point of 0. (A critical
point is a place where the gradient vanishes, a nondegenerate one is a
critical point where the matrix of second derivatives is invertible.) An
example of a nondegenerate self-similar ansatz is 0{q1, q2, t) = F(q1q2)
with F smooth and increasing; B(t) and P(x,t) can be arbitrary.

We will say that the nondegenerate self-similar blow-up ansatz (14) is
proper if there exists positive constants r and Co such that



Because of the conservation of all Lp norms the quantity L does not
change in time along solutions of the system (5). A known inequality(18)

where q = B(t) p.
We will use a bound on the supremum of \u\. The relationship

between 0 and u is such that the sup norm of u fails only logarithmically
to be bounded by the sup norm of 0. More precisely, let us define the
length L by

The non-negative coefficient M(t) describes the collapse; at f = 0 it equals
zero and at subsequent times it grows. The line q1 = 0 starts out as the line
Pi = 0, at later times corresponds to the line p2 = [ 1/M(r)] Pi and collapses
on the line p2 = 0 when M-> oo. We assume that F(t)> 1 to indicate com-
pression in the p2 direction. 0 has a nondegenerate hyperbolic saddle at the
origin and is not a proper function, but the blow-up ansatz is a proper
blow-up. Indeed, in order to verify that (20) holds we have to bound the
individual matrix elements in terms of an upper bound for |q1q2| on a
whole neighborhood of the origin in the p plane. By choosing a point with
Pi = 0 we obtain a bound for M{t) F(t). Then, by choosing a point with
P1

 = P2 = 0 we obtain an upper bound for F(t).
We will prove that a proper, nondegenerate generalized self-similar

blowup cannot happen in finite time for the active scalar. We take the
scalar product of (17) with AB(t) p. Making use of (18) and of (7) we
obtain

proper, the function p = q1q2 is not. Not all proper functions give rise to
proper generalized self-similar blow-up scenarios. But also, a nonproper
function can be the profile of a proper generalized self-similar blow-up
ansatz. A relevant example corresponds to a compression of one direction
and the collapse of one arm of a locally hyperbolic saddle onto the other
arm. Specifically, &{q, t) = F(q{q2, t) with F smooth and increasing and
B(t) is given by
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One can deduce from this inequality that ||B(t)|| grows at most as a double
exponential, and in view of the proper nondegenerate self-similar ansatz so
does the maximum of gradient of the scalar.

5. CONCLUSION

We have ruled out the possibility of a finite time proper nondegenerate
generalized self-similar blow-up in a simple incompressible active scalar.
The proof follows from a general covariance of the equation; the relative
simplicity of the ansatz is used also. Blow-up of this kind includes as a par-
ticular case certain nonisotropic singularity formation scenarios that were
suggested by direct numerical simulations.
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states that there exists an absolute constant C so that the integral (6)
satisfies

for all functions 9. (log + x = max(log.x:, 0).) A direct consequence of this
inequality is

We take p satisfying \p\ <r with r given in the definition of a proper
generalized self-similar ansatz. We integrate (21) in time, using the
inequalities (19) and (24). we then take the supremum for all such p and
use the inequality in (20). We obtain
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